HBGG: a Hierarchical Bayesian Geographical Model for Group Recommendation
نویسندگان
چکیده
Location-based social networks such as Foursquare and Plancast have gained increasing popularity. On those sites, users can organize and participate in group activities; hence, recommending venues to a group is of practical importance. In this paper, we study the problem of recommending venues to groups of users and propose a Hierarchical Bayesian Model (HBGG) for this purpose. First, a generative group geographical topic model (GG) which exploits group membership, group mobility regions and group preferences is proposed. And we integrate social structure into oneclass collaborative filtering as social-based collaborative filtering (SOCF) to leverage social wisdom. Through the shared latent group features, HBGG connects the group geographical model with SOCF framework for group recommendation. Experimental results on two real datasets show that our methods outperforms the state-of-the-art group recommenders, especially on cold-start user groups.
منابع مشابه
Uncertainty Modeling of a Group Tourism Recommendation System Based on Pearson Similarity Criteria, Bayesian Network and Self-Organizing Map Clustering Algorithm
Group tourism is one of the most important tasks in tourist recommender systems. These systems, despite of the potential contradictions among the group's tastes, seek to provide joint suggestions to all members of the group, and propose recommendations that would allow the satisfaction of a group of users rather than individual user satisfaction. Another issue that has received less attention i...
متن کاملAnalysis of Hierarchical Bayesian Models for Large Space Time Data of the Housing Prices in Tehran
Housing price data is correlated to their location in different neighborhoods and their correlation is type of spatial (location). The price of housing is varius in different months, so they also have a time correlation. Spatio-temporal models are used to analyze this type of the data. An important purpose of reviewing this type of the data is to fit a suitable model for the spatial-temporal an...
متن کاملBayesian change point estimation in Poisson-based control charts
Precise identification of the time when a process has changed enables process engineers to search for a potential special cause more effectively. In this paper, we develop change point estimation methods for a Poisson process in a Bayesian framework. We apply Bayesian hierarchical models to formulate the change point where there exists a step < /div> change, a linear trend and a known multip...
متن کاملAN ADDITIVE MODEL FOR SPATIO-TEMPORAL SMOOTHING OF CANCER MORTALITY RATES
In this paper, a Bayesian hierarchical model is used to anaylze the female breast cancer mortality rates for the State of Missouri from 1969 through 2001. The logit transformations of the mortality rates are assumed to be linear over the time with additive spatial and age effects as intercepts and slopes. Objective priors of the hierarchical model are explored. The Bayesian estimates are quite ...
متن کاملHierarchical Bayesian Models with Factorization for Content-Based Recommendation
Most existing content-based filtering approaches learn user profiles independently without capturing the similarity among users. Bayesian hierarchical models [42] learn user profiles jointly and have the advantage of being able to borrow discriminative information from other users through a Bayesian prior. However, the standard Bayesian hierarchical models assume all user profiles are generated...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017